Synergistic roles of the proteasome and autophagy for mitochondrial maintenance and chronological lifespan in fission yeast.

نویسندگان

  • Kojiro Takeda
  • Tomoko Yoshida
  • Sakura Kikuchi
  • Koji Nagao
  • Aya Kokubu
  • Tomás Pluskal
  • Alejandro Villar-Briones
  • Takahiro Nakamura
  • Mitsuhiro Yanagida
چکیده

Regulations of proliferation and quiescence in response to nutritional cues are important for medicine and basic biology. The fission yeast Schizosaccharomyces pombe serves as a model, owing to the shift of proliferating cells to the metabolically active quiescence (designate G0 phase hereafter) by responding to low nitrogen source. S. pombe G0 phase cells keep alive for months without growth and division. Nitrogen replenishment reinstates vegetative proliferation phase (designate VEG). Some 40 genes required for G0 maintenance were identified, but many more remain to be identified. We here show, using mutants, that the proteasome is required for maintaining G0 quiescence. Functional outcomes of proteasome in G0 and VEG phases appear to be distinct. Upon proteasome dysfunction, a number of antioxidant proteins and compounds responsive to ROS (reactive oxygen species) are produced. In addition, autophagy-mediated destruction of mitochondria occurs, which suppresses the loss of viability by eliminating ROS-generating mitochondria. These defensive responses are found in G0 but not in VEG, suggesting that the main function of proteasome in G0 phase homeostasis is to minimize ROS. Proteasome and autophagy are thus collaborative to support the lifespan of S. pombe G0 phase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of peroxisome fission, but not mitochondrial fission, increases yeast chronological lifespan

Mitochondria are key players in aging and cell death. It has been suggested that mitochondrial fragmentation, mediated by the Dnm1/Fis1 organelle fission machinery, stimulates aging and cell death. This was based on the observation that Saccharomyces cerevisiae Δdnm1 and Δfis1 mutants show an enhanced lifespan and increased resistance to cell death inducers. However, the Dnm1/Fis1 fission machi...

متن کامل

Maintenance of Mitochondrial Morphology by Autophagy and Its Role in High Glucose Effects on Chronological Lifespan of Saccharomyces cerevisiae

In Saccharomyces cerevisiae, mitochondrial morphology changes when cells are shifted between nonfermentative and fermentative carbon sources. Here, we show that cells of S. cerevisiae grown in different glucose concentrations display different mitochondrial morphologies. The morphology of mitochondria in the cells growing in 0.5% glucose was similar to that of mitochondria in respiring cells. H...

متن کامل

Rewiring yeast acetate metabolism through MPC1 loss of function leads to mitochondrial damage and decreases chronological lifespan

During growth on fermentable substrates, such as glucose, pyruvate, which is the end-product of glycolysis, can be used to generate acetyl-CoA in the cytosol via acetaldehyde and acetate, or in mitochondria by direct oxidative decarboxylation. In the latter case, the mitochondrial pyruvate carrier (MPC) is responsible for pyruvate transport into mitochondrial matrix space. During chronological ...

متن کامل

Yeast chronological lifespan and proteotoxic stress: is autophagy good or bad?

Autophagy, a highly conserved proteolytic mechanism of quality control, is essential for the maintenance of metabolic and cellular homoeostasis and for an efficient cellular response to stress. Autophagy declines with aging and is believed to contribute to different aspects of the aging phenotype. The nutrient-sensing pathways PKA (protein kinase A), Sch9 and TOR (target of rapamycin), involved...

متن کامل

Inhibition of TORC1 signaling and increased lifespan: gained in translation?

(DR) is a well-known intervention to slow down the aging of cells and organisms. Although the molecular mechanisms by which DR prolongs lifespan are poorly understood, the Target of Rapamycin Complex 1 (TORC1) signaling pathway that controls protein translation, autophagy and mitochondrial function, among other growth-related processes, is considered a main player mediating DR effects in divers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 8  شماره 

صفحات  -

تاریخ انتشار 2010